FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of Science in Applied Mathematics and Statistics	
QUALIFICATION CODE: 07BSOC; 07BAMS	LEVEL: 6
COURSE CODE: LIA601S	COURSE NAME: LINEAR ALGEBRA 2
SESSION: JUNE 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER	DR NEGA CHERE
MODERATOR:	DR DAVID IIYAMBO

INSTRUCTIONS

1. Answer ALL the questions in the booklet provided.
2. Show clearly all the steps used in the calculations.
3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

QUESTION 1

Write true if each of the following statements is correct and write false if it is incorrect. Justify your answer.
1.1. If there is a nonzero vector in the kernel of the matrix operator $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then this operator is one to one.
1.2. If the Characteristics polynomial of a 3 - square matrix A is given by

$$
\begin{equation*}
p(\lambda)=\lambda^{3}-4 \lambda^{2}+3 \lambda-1, \text { then } \operatorname{tr}(A)=-4 \tag{2}
\end{equation*}
$$

1.3. If λ is a non-zero eigenvalue of an invertible matrix A and v is a corresponding eigenvector, then $1 / \lambda$ is an eigenvalue of A^{-1} and v is a corresponding eigenvector.

QUESTION 2

Consider the bases $E=\left\{e_{1}, e_{2}, e_{3}\right\}=\{(1,0,0),(0,1,0),(0,0,1)\}$ and $S=\left\{u_{1}, u_{2}, u_{3}\right\}=\left\{(1,2,1),(2,5,0),(3,3,8\}\right.$ of \mathbb{R}^{3}. Then find the change of basis matrix $P_{E \leftarrow S}$ from S to E .

QUESTION 3

Let $A=\left[\begin{array}{lll}1 & 0 & 2 \\ -1 & 1 & 1 \\ 2 & 0 & 1\end{array}\right]$. Show that $\lambda=-1$ is an eigenvalue of A and find one eigenvector correspondent to this eigenvalue.

QUESTION 4

Let $T: P_{2} \rightarrow P_{2}$ defined by $T\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=a_{0}+a_{1}(x+1)+a_{2}(x+1)^{2}$.
4.1. Determine whether T is a linear transformation, if so, find $\operatorname{ker}(T)$.
4.2. Determine rank of T and nullity of T and use the result to determine whether T is an isomorphism.

QUESTION 5

Find the coordinate vector $[p(x)]_{\mathcal{B}}$ of $p(x)=5+4 x-3 x^{2}$ with respect to the basis

$$
\begin{equation*}
\mathcal{B}=\left\{1-x, 1+x+x^{2}, 1-x^{2}\right\} \text { of } P_{2} \tag{12}
\end{equation*}
$$

QUESTION 6

6.1. State the Cayley- Hamilton Theorem.

6.2. Verify the Cayley-Hamilton Theorem for the matrix.

$$
A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 0 & 1 \\
-2 & 1 & 0
\end{array}\right]
$$

QUESTION 7

Find a 3×3 matrix A that has eigenvalues $1,-1,0$ for which $\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$ are their corresponding eigenvectors.

QUESTION 8

Find the symmetric matrix that corresponds to the quadratic form

$$
\begin{equation*}
f(x, y, z)=x^{2}+4 x y-2 y^{2}+8 x z-6 y z . \tag{9}
\end{equation*}
$$

